HNO₃ Spectroscopy Evaluation

Geoff Toon, Jet Propulsion Laboratory, California Institute of Technology 2017-04-18

Compiled a HNO₃ linelist consisting of:

- HITRAN 2012 from 0 to 1800 cm⁻¹
- MIPAS-1220-1396pre from 1220 to 1396 cm⁻¹
- Pseudo-line-lists from 1800 to 4100 cm⁻¹

I believe that the first 2 of these are intended for HITRAN 2016.

The MIPAS linelist was the one described by Perrin et al., 2015.

The pseudo-linelists have been discussed elsewhere (not a topic here)

A series of 10 broad windows were defined, each containing a complete HNO₃ absorption band. These windows were fitted in lab spectra (Kitt Peak & PNNL) and atmospheric spectra (MkIV balloon).

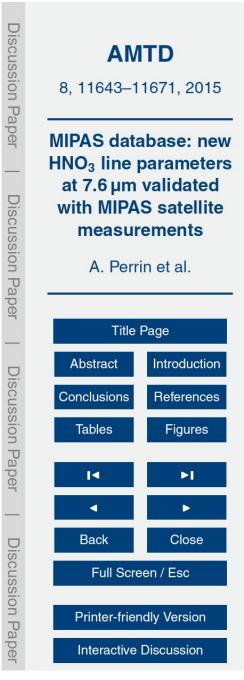
Copyright 2017 California Institute of Technology. Government sponsorship acknowledged.

Atmos. Meas. Tech. Discuss., 8, 11643–11671, 2015 www.atmos-meas-tech-discuss.net/8/11643/2015/ doi:10.5194/amtd-8-11643-2015 © Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Measurement Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

MIPAS database: new HNO₃ line parameters at 7.6 µm validated with MIPAS satellite measurements

A. Perrin¹, J.-M. Flaud¹, M. Ridolfi^{2,3}, J. Vander Auwera⁴, and M. Carlotti⁵


¹Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR 7583 CNRS, Universités Paris Est Créteil et Paris Diderot, Institut Pierre Simon Laplace, 61 avenue du Général de Gaulle, 94010 Créteil CEDEX, France

²Dipartimento di Fisica e Astronomia, Università di Bologna, 6/2 Viale Berti Pichat, 40127 Bologna, Italia

³Istituto di Fisica Applicata "N. Carrara" (IFAC) del Consiglio Nazionale delle Ricerche (CNR), 10 Via Madonna del Piano, 50019 Sesto Fiorentino (FI), Italia

⁴Service de Chimie Quantique et Photophysique, C.P. 160/09, Université Libre de Bruxelles, 50 avenue F.D. Roosevelt, 1050 Brussels, Belgium

⁵Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, 4 Viale del Risørgimento, 40136 Bologna, Italia

Laboratory Spectra Analyzed

3 PNNL spectra covering 600 to 6000 cm⁻¹ (5 to 50C; 1 atm)

- 1 Kitt peak spectrum covering 550-1400 cm⁻¹ (295K; <1 mbar)
- 5 Kitt peak spectra covering 600-2750 cm⁻¹ (273K; <1 mbar)
- 6 Kitt peak spectra covering 1100-2750 cm⁻¹ (296K; <1 mbar)

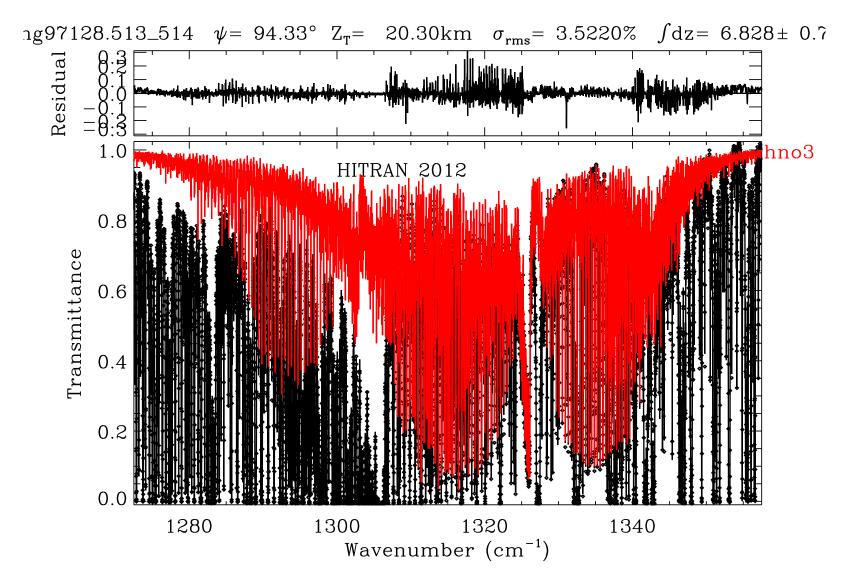
Not all spectra cover all bands/windows. Out of 15 spectra x 10 windows = 150 possible fits, only 55% could be performed.

MkIV Balloon Spectra

Used 39 spectra from a single occultation (fai07rat.brl) covering altitudes from 10 to 39 km.

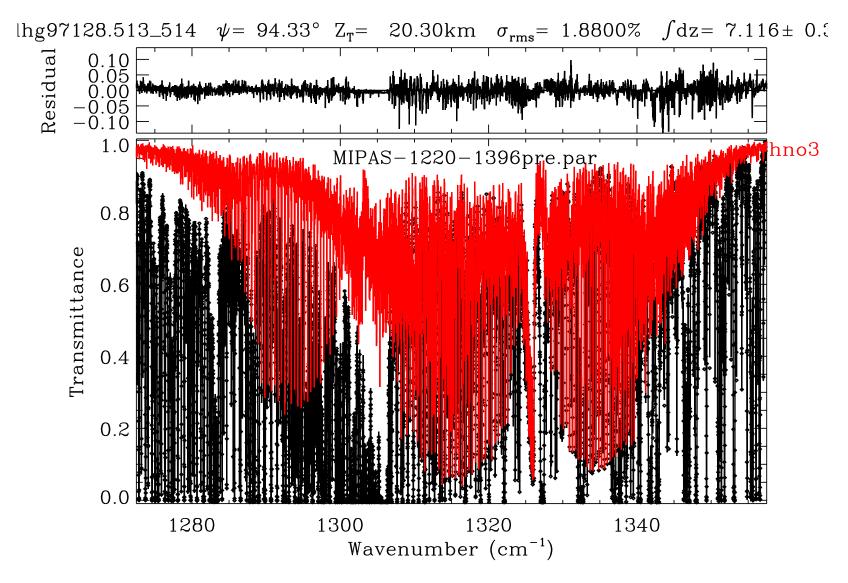
Spectral resolution = 0.01 cm^{-1} (57 cm OPD)

All MkIV spectra cover 650-6500 cm⁻¹ simultaneously and therefore cover all HNO_3 bands, which makes them very useful for evaluating band-to-band biases.

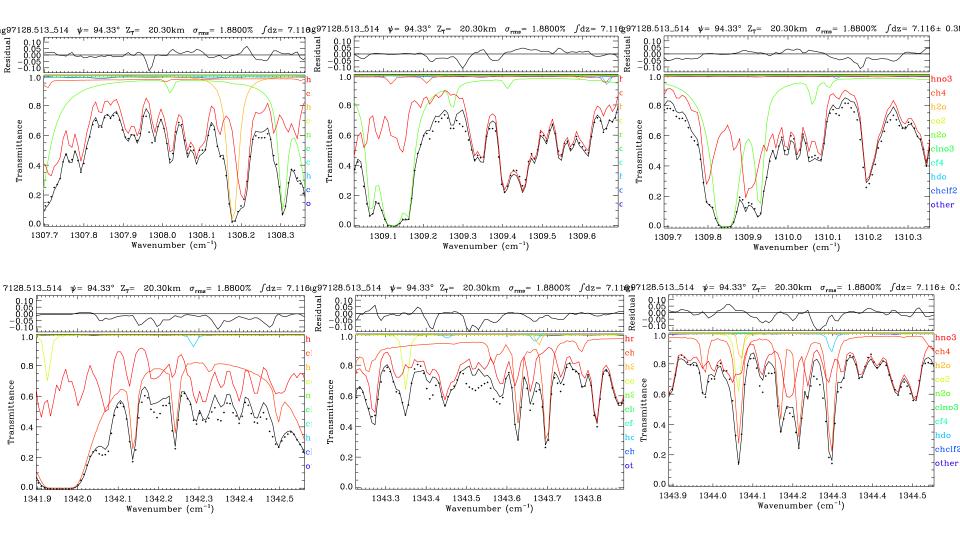

Wide range of temperature, pressures, and HNO₃ slant columns encountered.

VMR Scale factors & RMS Fits

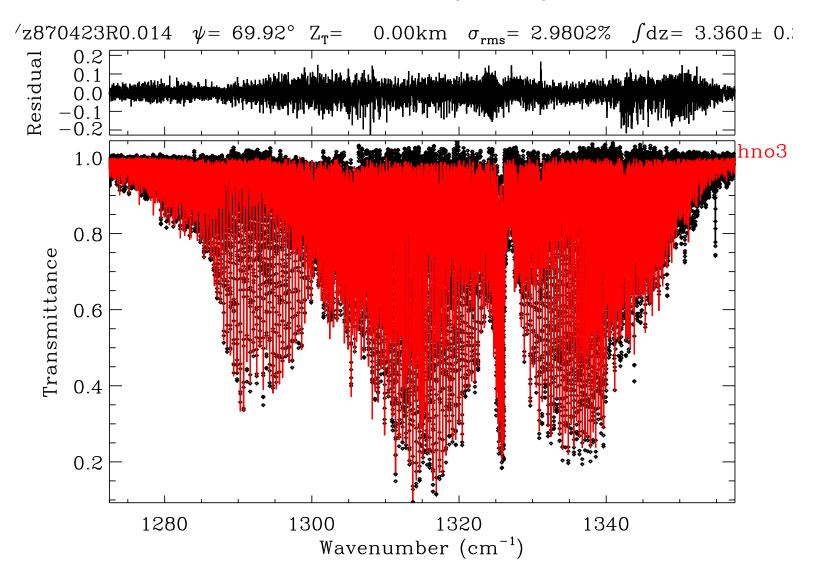
Window (cm-1)	VMR Scale Balloon	VMR Scale Laboratory	% RMS Balloon	% RMS Lab
766 ± 25	0.94±0.03	0.92±0.03	0.80	0.37
885 ± 44	0.99±0.03	0.98±0.02	0.37	0.49
1208 ± 27	1.21±0.03	1.21±0.03	0.26	0.20
1314 ± 45	0.81±0.03	0.81±0.03	0.56	1.84
1314 ± 45	0.89±0.02	0.91±0.03	0.30	1.10
1707 ± 48	0.96±0.04	0.95±0.03	1.46	1.19
2645 ± 32	1.10±0.05	0.92±0.18	0.21	0.15
2999 ± 47	0.86±0.08	1.14±0.28	0.51	0.12
3402 ± 22	0.89±0.07	0.80±0.50	0.22	0.03
3550 ± 35	0.81±0.06	1.17±0.15	0.92	0.58
4000 ± 35	1.01±0.09	1.02±0.10	0.45	0.08


VMR Scaling is the factor that needs to be applied to the line intensities to make bands consistency. Black represents windows fitted with HITRAN 2012 HNO₃ linelist. Blue represents window fitted with MIPAS-1220-1396pre.par linelist. Green represent windows fitted with HNO₃ pseudo-linelists.

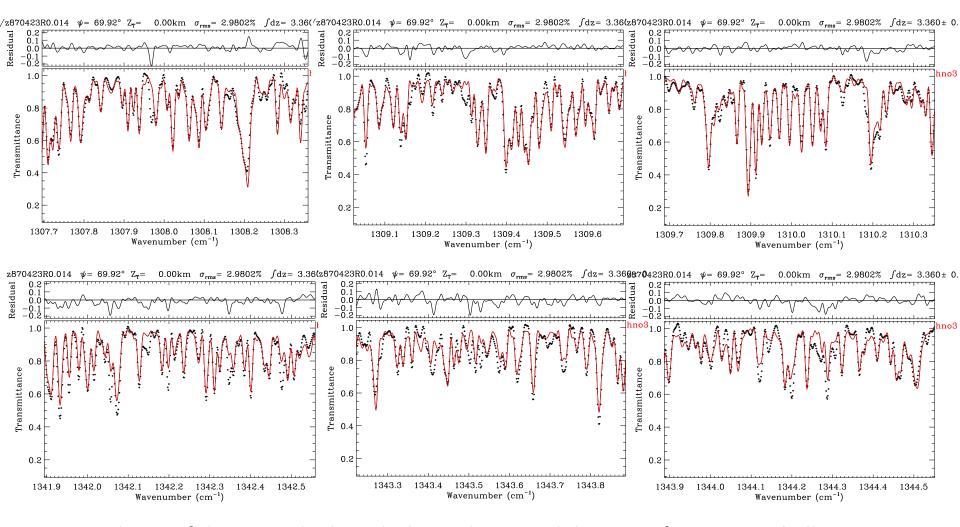
Example of Balloon fit – HITRAN12


Main absorbers are CH₄, H₂O and HNO₃. Peak residual exceed 30% and the rms is 3.52%

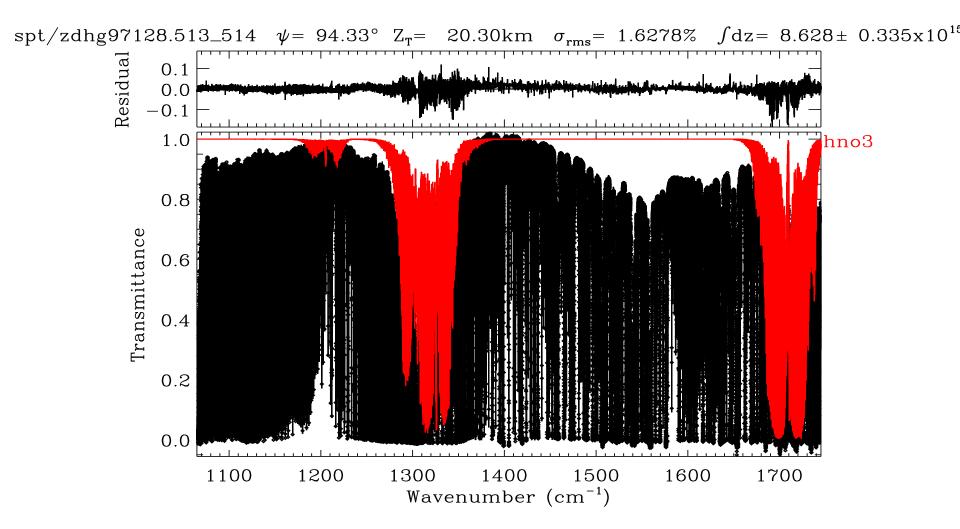
Example of Balloon fit – MIPAS-1220-1396



Peak residuals are reduced to 14% with an rms of 1.88 %


Examples of remaining large residuals in fits to balloon spectra – MIPAS-1220-1396

Example of fit to Kitt Peak lab spectrum – MIPAS-1220-1396pre.par linelist



Examples of remaining large residuals in fits to KP lab spectra – MIPAS-1220-1396

Note similarity of these residuals with those shown 2 slide ago in fits to MKIV balloon spectra.

Example of balloon spectral fit

Even using the new MIPAS-1220-1396pre linelist, fits to MKIV balloon spectra in the lower stratosphere (20 km tangent altitude) are still dominated by HNO₃ spectroscopic problems. [With HITRAN_2012 HNO₃ linelist, residuals around 1300-1350 cm⁻¹ reached 30%.]

Conclusions

MIPAS-1220-1396pre.par linelist represents a substantial improvement over HITRAN_2012 in the 1300 cm⁻¹ region containing the v_3 and v_4 bands:

- Fitting residuals are reduced:
 - Balloon: from 0.56% to 0.30%
 - Laboratory: from 1.84% to 1.10%
- Retrieved HNO₃ amounts are more consistent with those from other windows:
 - Balloon: VSF increased from 0.81 to 0.89
 - Laboratory: VSF increased from 0.81 to 0.91

So, using the new MIPAS linelist, reduces the low bias from 19% to 10% in the 1300 cm⁻¹ window, which is a significant improvement over HITRAN 2012.

The new linelist reduces the rms fitting residuals by nearly a factor ~2 in balloon and lab data. But residuals up to 15% remain in fits to balloon spectra and are very similar to those seen in lab spectra, implying a common cause (HNO₃).

Scale factors are surprisingly consistent between lab & balloon spectra

- Intensities in 1208 cm⁻¹ band need multiplying by 1.2
- Intensities in 1314 cm⁻¹ band need multiplying by 0.9