HNO₃ Spectroscopy Evaluation

Geoffrey Toon Jet Propulsion Laboratory California Institute of Technology

In July 2006, HITRAN released a complete replacement for HNO_3 , based on the work of Flaud et al., [2006] "MIPAS database: Validation of HNO_3 line parameters using MIPAS satellite measurements", ACP, 6, 5037-5048, 2006

I evaluate this new HNO_3 linelist by using it to fit MkIV balloon spectra and PNNL laboratory spectra. The latter are described by Chackerian et al. JQSRT, 82, 429-441, 2003.

[Why fit MkIV spectra, not ACE? They are 2¹/₃ times higher spectral resolution – easier to see spectroscopic problems]

HNO₃ Fundamentals

HNO ₃ has 3N-6 = 9 fundamental vibration- rotation bands	458.2 580.3	$v_9 v_7$
	646.8	v_6
	763.2	v_8
	879.1	ν_5
It therefore has	1303.2	v_4
 9 first overtone bands 	1326.2	v_3
 9x8/2 = 36 simple combination bands 	1709.6	v_2
	3551.7	v_1^-
Most of these 9+9+36=54 bands are		

discernable in solar occultation spectra

How many are in HITRAN?

HNO₃ ground-state bands

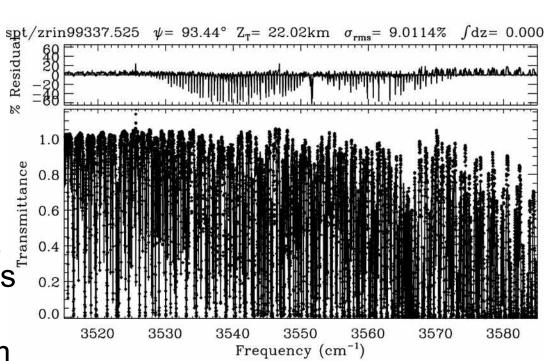
458.2	v_9	1522.8	$v_{5} + v_{6}$	2467.9	$v_2 + v_8$
580.3	v_7	1523.3	$2v_8$	2583.5	$v_2 + v_5$
646.8	ν_6	1639.0	$v_{5} + v_{8}$	2601.2	$2v_4$
763.2	ν_8	1709.6	ν ₂	2624.1	$v_3 + v_4$
879.1	ν_5	1754.7	$2v_5$	2645.1	$2v_3$
914.6	2v ₉	1757.9	$v_4 + v_9$	3006.8	$v_2 + v_4$
1036.4	$v_7 + v_9$	1780.8	$v_3 + v_9$	3029.7	$v_2 + v_3$
1102.8	$v_{6} + v_{9}$	1879.7	$v_4 + v_7$	3412.4	$2v_2$
1158.3	$2v_7$	1902.7	$v_3 + v_7$	3551.7	v_1
1205.0	$v_8 + v_9$	1946.1	$v_4 + v_6$	4006.9	$v_1 + v_9$
1224.6	$v_6 + v_7$	1969.1	$v_3 + v_6$	4123.7	$v_1 + v_7$
1291.0	$2v_6$	2062.3	$v_4 + v_8$	4190.1	$v_1 + v_6$
1303.2	ν_4	2085.2	$v_3 + v_8$	4306.3	$v_1 + v_8$
1326.2	v_3	2163.5	$v_2 + v_9$	4421.9	$v_1 + v_5$
1334.6	$v_5 + v_9$	2177.9	$v_4 + v_5$	4845.2	$v_1 + v_4$
1340.8	$v_7 + v_8$	2200.9	$v_3 + v_5$	4868.1	$v_1 + v_3$
1407.2	$v_{6} + v_{8}$	2285.3	$v_2 + v_7$	5250.8	$v_1 + v_2$
1456.5	$v_{5} + v_{7}$	2351.7	$v_2 + v_6$	7089.2	$2v_1$

Bold indicates present in July 2006 HITRAN update

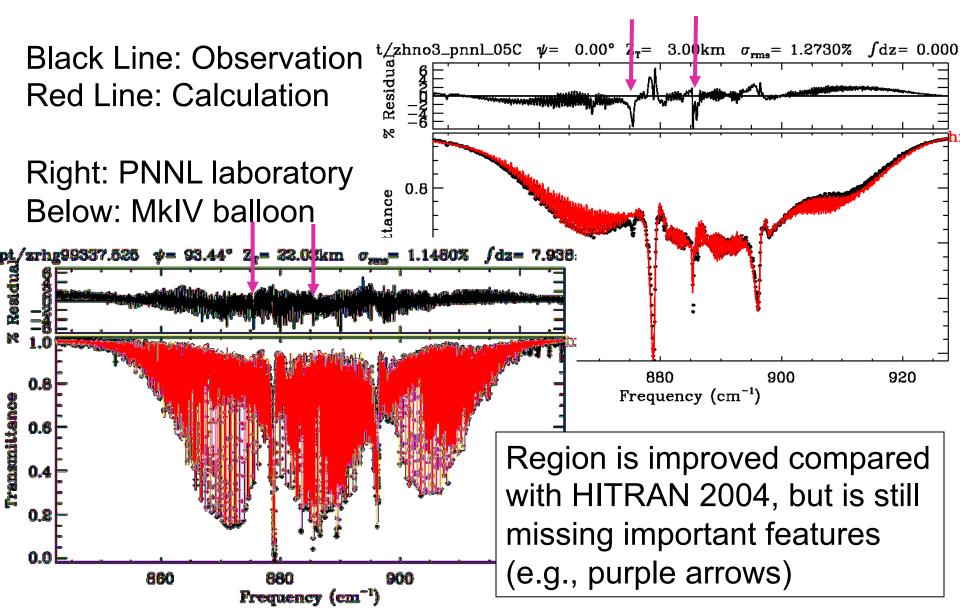
HNO₃ Spectroscopy Evaluation

So the July 2006 HITRAN update for HNO₃ covers 11/54 possible ground-state bands

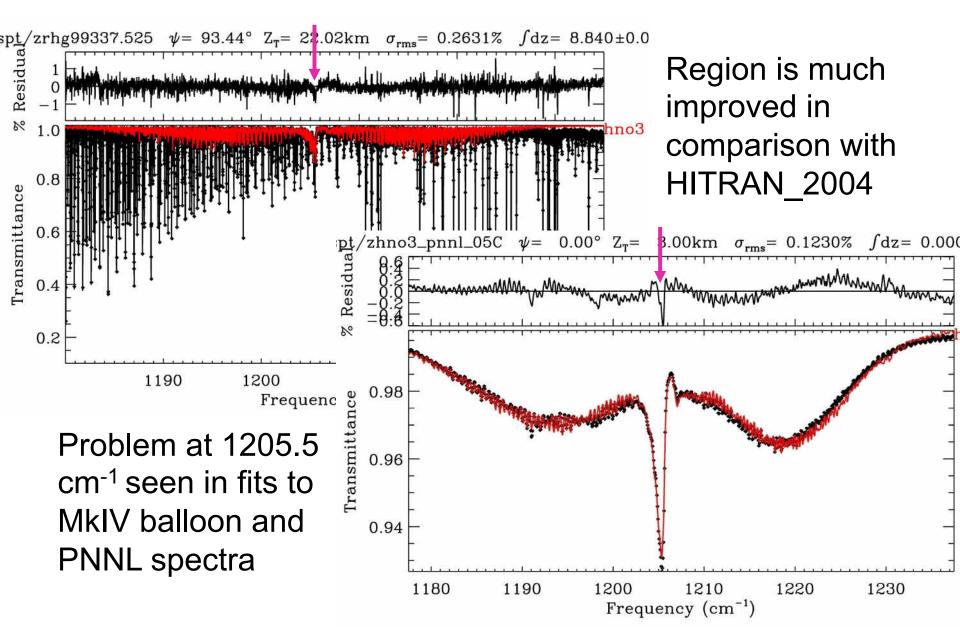
- 8/9 fundamentals (missing v_1)
- 1/9 overtones ($2v_9$ only)
- 2/36 combination bands
- 4/100+ hot-bands
- 1/5 single-substituted isotopologs


HNO₃ Spectroscopy Evaluation

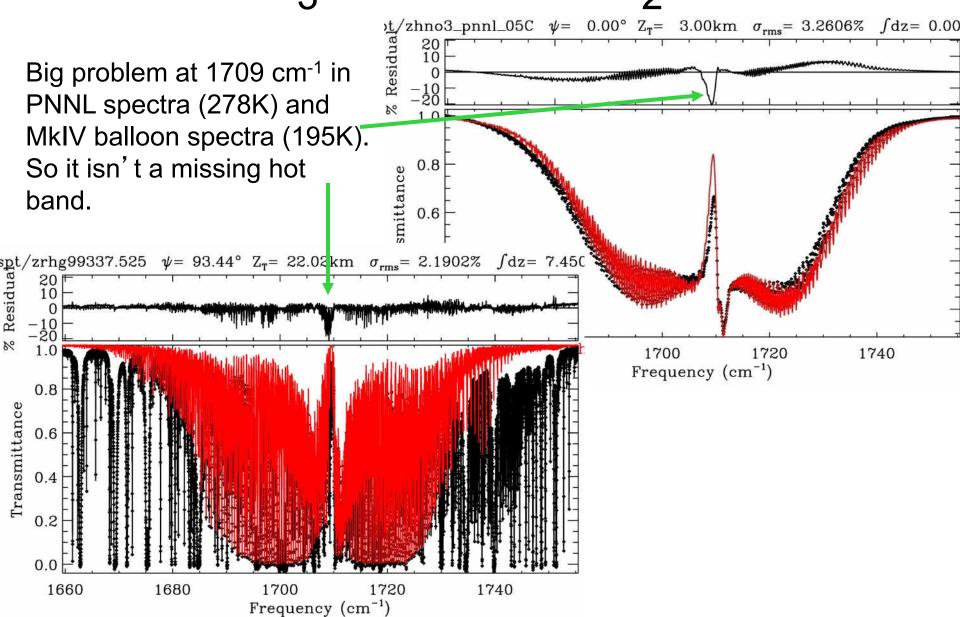
How well does the July 2006 HITRAN update represent the 11 absorption bands that it covers?


Does it make any real difference that so many HNO₃ bands are missing?

Can they be seen in spectral fits to solar occultation spectra?


Yes!. The missing HNO₃ lines are 60% deep in this 22 km tangent altitude limb occultation spectrum

HNO₃ 900 cm⁻¹: $v_5 \& 2v_9$



HNO₃ 1205 cm⁻¹: $v_8 + v_9 \& v_6 + v_7$

HNO₃ 1303 & 1326 cm⁻¹ v_4 & v_3 bands $p_{rms} = 3.6508\% \int dz = 0.00^{\circ} Z_{r} = 3.00 \text{ km} \sigma_{rms} = 3.6508\% \int dz = 0.000^{\circ}$ 10 5 Residu The strongest HNO₃ band Mart -1Ŏ has serious deficiencies, 1.0 apart from a 15 cm⁻¹-wide section of the R-branch 0.8 littance 0.6 $/\text{zrhg}99337.525 \quad \psi = 93.44^{\circ} \text{ Z}_{T} = 22.02 \text{ km} \quad \sigma_{rms} = 4.3492\%$ ∫dz= 6.425 40 % Residu 20 -20 1.0 1340 1320 0 Frequency (cm^{-1}) 0.8 **Fransmittance** 0.6 Missing $v_5 + v_9$ and $v_7 + v_8$ HNO₃ bands 0.4 prevent SO₂ retrieval 0.2 1280 1300 1320 1340 Frequency (cm^{-1})

HNO₃ 1709 cm⁻¹ v_2 band

Bands completely missing from HITRAN

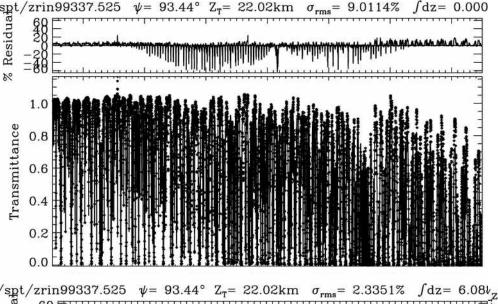
In the next section we look at a few of the bands at frequencies above 1770 cm⁻¹ that are missing from HITRAN

We evaluate their impact on the surrounding spectral region by fitting MkIV balloon spectra acquired in the winter polar vortex at 22-23 km tangent altitude (lots of HNO_3).

We also evaluate new, empirical HNO_3 linelists for 3 of the missing bands.

Empirical linelists for missing bands

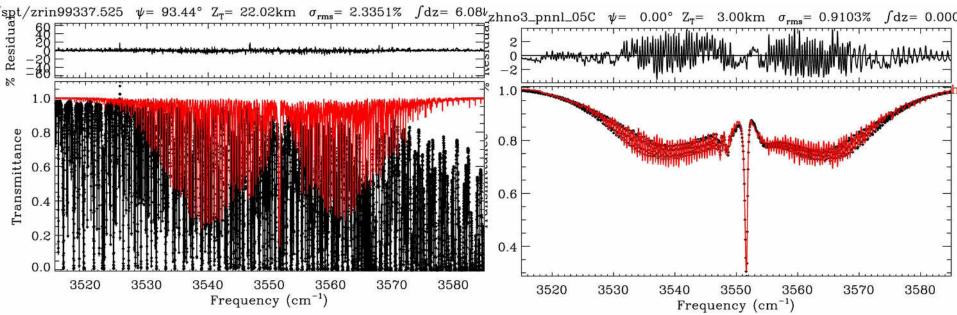
Lacking spectra acquired at low T, it was not possible to generate an empirical PLL as was done for C_2H_{6} . Use MkIV balloon spectra instead.

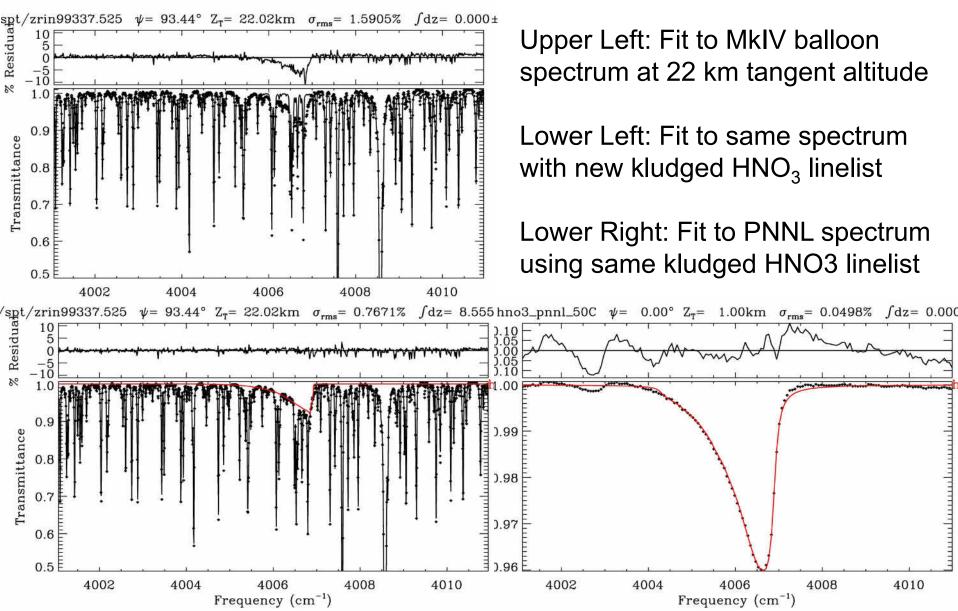

Assumed that all HNO₃ bands have the same basic P-Q-R shape with a similar ~0.4 cm⁻¹ spacing of the manifolds.

• Use the v_2 band (1700 cm⁻¹) as template for missing HNO₃ bands.

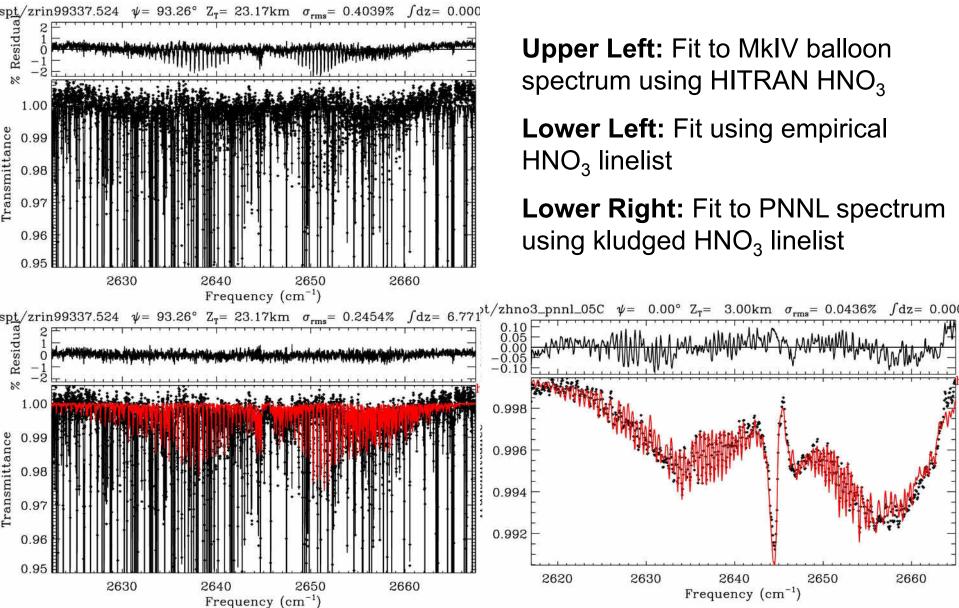
• Shift and squeeze/stretch the template linelist until it fits the manifold positions of the missing band. Scale the P/Q/R branch intensities.

Works well for P & R branches, but Q-branches were difficult.


HNO₃ 3551 cm⁻¹ v_1 band


Upper Left: Fit to MkIV balloon spectrum using HITRAN: no HNO₃

Lower Left: MkIV spectrum fitted using empirical HNO₃ linelist


Lower Right: PNNL spectrum fitted using empirical HNO₃ linelist

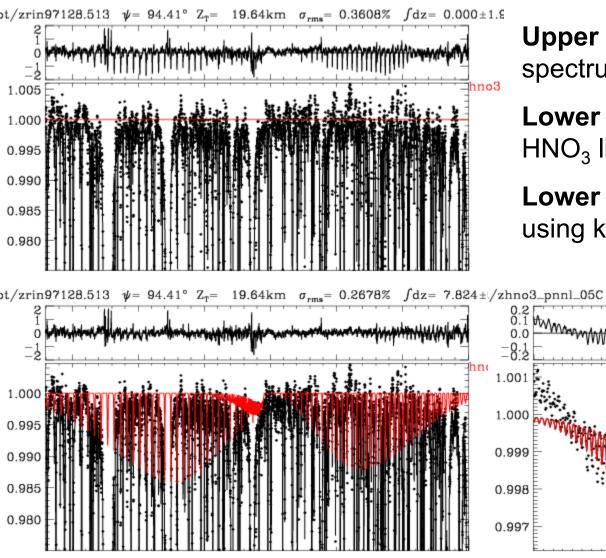
HNO₃ 4006 cm⁻¹ v_1 + v_9 band

HNO₃ 2645 cm⁻¹ $2v_3$ band

Upper Left: Fit to MkIV balloon spectrum using HITRAN HNO₃

Lower Left: Fit using empirical HNO₃ linelist

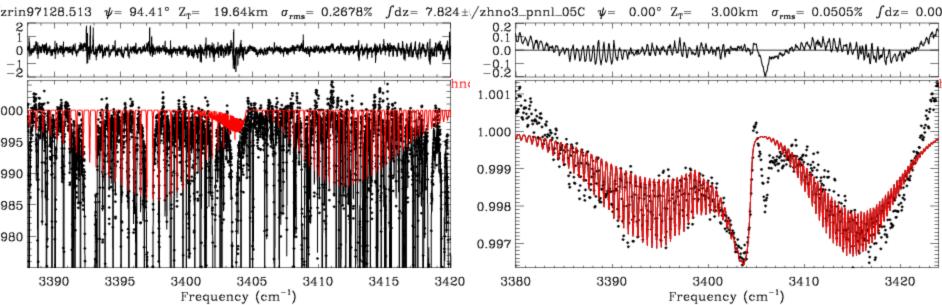
Lower Right: Fit to PNNL spectrum using kludged HNO₃ linelist


2640

Frequency (cm⁻¹)

2650

2660


HNO₃ 3404 cm⁻¹ $2v_2$ band

Upper Left: Fit to MkIV balloon spectrum using HITRAN HNO₃

Lower Left: Fit using empirical HNO₃ linelist

Lower Right: Fit to PNNL spectrum using kludged HNO₃ linelist

Comparison with HITRAN 2004

2006 HNO₃ update is a major improvement over HITRAN 2004:

- Was focused on thermal IR (MIPAS & IASI)
- Reduced strength inconsistencies between 900 and 1700 cm⁻¹ regions
- Improved fits to the 900 and 1200 cm⁻¹ regions
- Introduced J-dependent widths (900 cm⁻¹ region only)
- But serious deficiencies remain:
- v₃ band at 1300 cm⁻¹ (the strongest) is still unusable (except for a narrow section of the R-branch
- Zero lines above 1770 cm⁻¹.
- Missing the v_1 fundamental band at 3550 cm⁻¹
- Missing the vast majority of overtone and combination bands
- Missing most hot bands and all heavy isotopologs
- HNO₃ widths are all constant, with the exception of the 900 cm⁻¹ region

 HNO_3 is the main cause of poor residuals in fits to stratospheric spectra.

Conclusions

HNO₃ spectroscopic deficiencies are a major obstacle to further progress in the use of solar occultation spectra for new research into atmospheric composition.

Detection/Measurement of the following gases is impaired by HNO₃ spectroscopic inadequacies

- •SO₂ at 1340 cm⁻¹
- •H₂CO at 1700 cm⁻¹
- •HOCI at 1230 cm⁻¹
- •HDO at 2645 cm⁻¹
- •OH & HO₂ at 3400 cm⁻¹
- •OH & HO₂ at 3550 cm⁻¹
- •HF at 4000 cm⁻¹

Improved HNO₃ linelist urgently needed !

Empirical HNO₃ linelists

Created new empirical HNO₃ linelists for:

- 2v₃ at 2645 cm⁻¹
- 2v₂ at 3404 cm⁻¹
- v₁ at 3551 cm⁻¹
- v₁+v₉ at 4006.6 cm⁻¹

Although these empirical linelists are better than nothing, they do not allow the fitting of MkIV spectra down to the noise level.

These empirical linelists should **not** be used for retrieving HNO_3 itself. They should only be used for fitting other gases of interest in these regions, where HNO_3 is an interferent.

A linelist doesn't have to be perfect to be extremely useful to the remote sensing community.